RINCIPLES OF OPERATING SYSTEMS

Kernel I/O Subsystem

m See A Kernel I/O Structure slide - Fig 13.6
m Scheduling

= Some 1I/O request ordering via per-device queue
= Some OSs try fairness

m Buffering - store data in memory while transferring between devices

= To cope with device speed mismatch - de-couples application from
device action

= To cope with device transfer size mismatch

= To maintain “copy semantics” - guarantee that the version of data
written to device from a buffer is identical to that which was there
at the time of the “write call” - even if on return of the system call,

the user modifies buffer - OS copies data to kernel buffer before
returning control to user.

= Double or “ping-pong” buffers - write in one and read from
another - decouples devices and applications

... Idea can be extended to multiple buffers accesses in a circular
fashion

Sun Enterprise 6000 Device-Transfer Rates

gigaplane
bus

SBUS

SCSl bus

fast
ethernet

hard disk

ethernet

laser
printer

modem

I

keyboard

1

o
7
’000 -
70
’000 L

Kernel I/O Subsystem - (continued)

B Caching - fast memory holding copy of data
= Always just a copy
= Key to performance
= How does this differ from a buffer?

B Spooling - a buffer holding output/(input too) for a device
= If device can serve only one request at a time
= Avoids queuing applications making requests.

= Data from an application is saved in a unique file associated
with the application AND the particular request. Could be
saved in files on a disk, or in memory.

= Example: Printing

B Device reservation - provides exclusive access to a device
= System calls for allocation and deallocation
= Watch out for deadlock - why?

Error Handling

OS can recover from disk read, device unavailable,
transient write failures

Most return an error number or code when 1/O request
fails

System error logs hold problem reports

CRC checks - especially over network transfers of a
lot of data, for example video in real time.

Kernel Data Structures

Kernel keeps state info for I/O components, including open file
tables, network connections, character device state

= used by device drivers in manipulating devices and data
transfer, and in for error recovery

= datathat has images on the disk must be kept in synch with
disk copy.
Many, many complex data structures to track buffers, memory
allocation, “dirty” blocks

Some use object-oriented methods and message passing to
implement 1/O

= Make data structures object oriented classes to encapsulate
the low level nature of the “device” - UNIX provides a
seamless interface such as this.

UNIX I/O Kernel Data Structure

Refer to chapter 11 and 12 on files

system-wide open-file table

) active-inode table
file-system record

inode pointer
pointer to read and write functions
pointer to select function
per-process pointer to ioctl function

file descriptor | open-file table pointer to close function

L
L
L

network-
networking (socket) record information table

pointer to network info
user-process memory pointer to read and write functions
pointer to select function

pointer to ioctl function

pointer to close function

kernel memory

Fig. 13.9

Mapping I/O Requests to Hardware Operations

m Consider reading a file from disk for a process:

How is connection made from file-name to disk controller:
= Determine device holding file
= Translate name to device representation
= Physically read data from disk into buffer
= Make data available to requesting process
= Return control to process

B See the 10 step scenario on pp. 479-481 (Silberschatz, 6th ed.)
for a clear description.

Life Cycle of An I/O Request

user I/O completed,

request I/O process inp::.l t‘éﬂiﬁﬂgg or

system call
y return from system call

kernel transfer data
can already /O subsystem | (if appropriate) to process,
satisfy request? yes o return completion

or error code

TDataalready in buf
Ex read ahead

send request to device
driver, block process if kernel
appropriate I/0 subsystem

¥

process request, issue

determine which 1/O
completed, indicate state
change to 1/O subsystem

T

interrunt receive interrupt, store

device controller commands handlé}r data in device-driver buffer
if input, signal to unblock

device driver

'

interrupt

I/O completed,
generate interrupt

)

commands to controller, device
configure controller to driver
block until interrupted

device
monitor device, controller
interrupt when I/O
completed

STREAMS (?)

STREAM - a full-duplex communication channel between
a user-level process and a device

A STREAM consists of:
- STREAM head interfaces with the user process

- driver end interfaces with the device
- zero or more STREAM modules between them.

Each module contains aread queue and a write queue

Message passing is used to communicate between
gueues

The STREAMS Structure

user process

stream head

read queue

write queue

T

'

read queue

write queue

T

'

read queue

write queue

T

Y

read queue

write queue

driver end

Performance

m |/O a major factor in system performance:

= Places demands on CPU to execute device driver, kernel I/O code
resulting in context switching
interrupt overhead

= Data copying - loads down memory bus

= Network traffic especially stressful

= See bulleted list on page 485 (Silberschatz, 6th ed.)

m Improving Performance
See bulleted list on page 485 (Silberschatz, 6th ed.)

= Reduce number of context switches

= Reduce data copying

= Reduce interrupts by using large transfers, smart controllers, polling
= Use DMA

= Move proccessing primitives to hardware

= Balance CPU, memory, bus, and I/0O performance for highest
throughput

Intercomputer Communications- omit for now

network
packet
received

character
typed system call
completes

i

(=3 B

interrupt interrupt
generated handled

IE |

interrupt interrupt interrupt
handled generated generated

F 3
network

network
adapter

I

device network
driver subdaemon

¥ 3 3

L

user context s kernel network context L
process switch daemon switch

sending system receiving system

Device-Functionality Progression

Where should I/O functionality be implemented? Application
level ... device hardware

Decision depends on trade-offs in the design layers:

new algorithm

v

application code

3

kernel code

device-driver code

device-controller code (hardware)

Increased efficiency

increased flexibility

device code (hardware)

—_— e
w w
c O
= ° S
© - O
> o) ©
c - ©
D o “—
(@) (@) g
2 5| |z
[}
E= © (0]
17}
o] ge] «©
) [0} [0}
7} 17} =
© @ 2
o o £

