
PRINCIPLES OF OPERATING SYSTEMS

LECTURE 34
KERNEL, TRANSFORMING I/O

REQUESTS & PERFORMANCE ISSUES

Kernel I/O Subsystem
 See A Kernel I/O Structure slide - Fig 13.6
 Scheduling

 Some I/O request ordering via per-device queue
 Some OSs try fairness

 Buffering - store data in memory while transferring between devices
 To cope with device speed mismatch - de-couples application from

device action
 To cope with device transfer size mismatch
 To maintain “copy semantics” - guarantee that the version of data

written to device from a buffer is identical to that which was there
at the time of the “write call” - even if on return of the system call,
the user modifies buffer - OS copies data to kernel buffer before
returning control to user.

 Double or “ping-pong” buffers - write in one and read from
another - decouples devices and applications
… idea can be extended to multiple buffers accesses in a circular
fashion

Sun Enterprise 6000 Device-Transfer Rates

Kernel I/O Subsystem - (continued)

 Caching - fast memory holding copy of data
 Always just a copy
 Key to performance
 How does this differ from a buffer?

 Spooling - a buffer holding output/(input too) for a device
 If device can serve only one request at a time
 Avoids queuing applications making requests.
 Data from an application is saved in a unique file associated

with the application AND the particular request. Could be
saved in files on a disk, or in memory.

 Example: Printing

 Device reservation - provides exclusive access to a device
 System calls for allocation and deallocation
 Watch out for deadlock - why?

Error Handling

 OS can recover from disk read, device unavailable,
transient write failures

 Most return an error number or code when I/O request
fails

 System error logs hold problem reports

 CRC checks - especially over network transfers of a
lot of data, for example video in real time.

Kernel Data Structures

 Kernel keeps state info for I/O components, including open file
tables, network connections, character device state
 used by device drivers in manipulating devices and data

transfer, and in for error recovery
 data that has images on the disk must be kept in synch with

disk copy.
 Many, many complex data structures to track buffers, memory

allocation, “dirty” blocks

 Some use object-oriented methods and message passing to
implement I/O
 Make data structures object oriented classes to encapsulate

the low level nature of the “device” - UNIX provides a
seamless interface such as this.

UNIX I/O Kernel Data Structure

Fig. 13.9

Refer to chapter 11 and 12 on files

Mapping I/O Requests to Hardware Operations

 Consider reading a file from disk for a process:

How is connection made from file-name to disk controller:
 Determine device holding file
 Translate name to device representation
 Physically read data from disk into buffer
 Make data available to requesting process
 Return control to process

 See the 10 step scenario on pp. 479-481 (Silberschatz, 6th ed.)
for a clear description.

Life Cycle of An I/O Request

Data already in buffer
Ex read ahead

STREAMS (?)

 STREAM – a full-duplex communication channel between
a user-level process and a device

 A STREAM consists of:
- STREAM head interfaces with the user process
- driver end interfaces with the device
- zero or more STREAM modules between them.

 Each module contains a read queue and a write queue

 Message passing is used to communicate between
queues

The STREAMS Structure

Performance
 I/O a major factor in system performance:

 Places demands on CPU to execute device driver, kernel I/O code
 resulting in context switching
 interrupt overhead

 Data copying - loads down memory bus
 Network traffic especially stressful
 See bulleted list on page 485 (Silberschatz, 6th ed.)

 Improving Performance
See bulleted list on page 485 (Silberschatz, 6th ed.)
 Reduce number of context switches
 Reduce data copying
 Reduce interrupts by using large transfers, smart controllers, polling
 Use DMA
 Move proccessing primitives to hardware
 Balance CPU, memory, bus, and I/O performance for highest

throughput

Intercomputer Communications- omit for now

Device-Functionality Progression
Where should I/O functionality be implemented? Application
level … device hardware

Decision depends on trade-offs in the design layers:

